domingo, 3 de noviembre de 2013

Aplicaciones de la hipérbola


La hipérbola tiene una propiedad interesante: Si unimos cualquier punto, P, de la hipérbola con sus focos, el ángulo que forman los radios focales con la tangente en ese punto, son iguales. Esta propiedad se utiliza en la construcción de espejos (de luz y sonido), pues la emisión, de luz o sonido, desde el foco se refleja en la dirección de la recta que une el otro foco con el punto. 

Aplicada en astronomía: Trayectorias de cometas. 

Un cuerpo celeste que provenga del exterior del sistema solar y sea atraído por el sol, describirá una órbita hiperbólica, teniendo como un foco al sol y saldrá nuevamente del sistema solar. Esto sucede con algunos cometas. 

 Aplicada en mecánica: 

Se usan en el diseño de estructuras hay algunas veces que los resultados de las fuerzas sobre una viga dan en forma de hipérbola. Si usas una linterna (cuyo haz de luz es cónico) y la colocas paralela a una pared, el borde de luz que se ve contra la pared es una perfecta hipérbola. 

Es bastante común verla en edificios y construcciones arquitectónicas. Si tienes un edificio de sección cuadrada o rectangular con un remate o cúpula cónica (algo similar al edificio Chrysler), la unión de ambos cuerpos produce hipérbolas. 

Propiedad Optica:

Consideremos un espejo que tenga forma de hipérbola. Si un rayo de luz que parta de uno de los focos choca contra el espejo, se reflejará alejandose directamente del otro foco. 

Sistema de navegación LORAN:

 La propiedad de la definición de la hipérbola: la diferencia de las distancias de los puntos de la hipérbola a los focos es constante, se utiliza en la navegación.En el sistema de navegación LORAN, una estación radioemisora maestra y otra estación radioemisora secundaria emiten señales que pueden ser recibidas por un barco en altamar. Puesto que un barco que monitoree las dos señales estará probablemente más cerca de una de las estaciones, habrá una diferencia entre las distancias recorridas por las dos señales, lo cual se registrará como una pequeña diferencia de tiempo entre las señales, En tanto la diferencia de tiempo permanezca constante, la difeerencia entre las dos distancias será también constante. Si el barco sigue la trayectoria correspondiente a una diferencia fija de tiempo, esta trayectoria será una hipérbola cuyos focos están localizados en las posiciones de las dos estaciones. Si se usan dos pares de transmisores, el barco deberá quedar en la intersección de las dos hipérbolas correspondientes. 

Trayectorias de cometas:

Un cuerpo celeste que provenga del exterior del sistema solar y sea atraído por el sol, describirá una órbita hiperbólica, teniendo como un foco al sol y saldrá nuevamente del sistema solar. Esto sucede con algunos cometas. 

El reloj de sol: 

Cada día el Sol, desde que sale por el Este y se pone por el Oeste, describe sobre el cielo un arco de circunferencia. Este movimiento es aparente, porque, en realidad, es consecuencia del movimiento diario de rotación de la Tierra.Desde hace mucho tiempo se sabe que, cuando el Sol recorre el cielo a lo largo de un día, la sombra que proyecta un objeto fijo describe una curva cónica. Esto se puede comprobar experimentalmente si se va marcando, por ejemplo, cada media hora, sobre una superficie plana el límite de la sombra que proyecta un objeto cualquiera.Los relojes de sol se fundamente en este hecho. Están provistos de un marcador o estilete, llamado gnomon, que proyecta su sombra sobre una superficie plana donde están señalizadas las horas. El extremo de la sombra indica la hora solar correspondiente.El sol, por lo lejano que está, se considera como un foco puntual de luz. La línea imaginaria que le une con el extremo del gnomon recorre a lo largo del día parte de la superficie de un cono, también imaginario. La superficie de este cono se corta por el plano del reloj donde se obseva la sombra del extremo del gnomon. Por eso, la trayectoria que sigue esa sombra es la de una cónica.En las latitudes de la Península Ibérica (de 38º a 42º) esa cónica es siempre una hipérbola, tanto más curvada cuanto más próximo esté el día 21 de Junio (solsticio de verano) o al 21 de Diciembre (solsticio de invierno). En dos días del año, la trayectoria de la sombra que proyecta el gnomon es una recta en todos los lugares de la Tierra. Esto ocurre en los días 21 de marzo (equinoccio de primavera) y 23 de septiembre (equinoccio de otoño). La razón es que , en esos días, la trayectoria del Sol y el extremo del gnomon están en un mismo plano que corta al plano de observación en una recta. 

Marchemos al espacio para observar un asteroide que vaga libremente. Su trayectoria será rectilínea (Ley de Newton) hasta que se vea perturbada por la proximidad de un planeta, por ejemplo, cuya tracción comienza a curvarlo. 

 

En raros casos el asteroide, será “capturado ” por el planeta y caerá hacia él o pasara a moverse siguiendo una orbita elíptica a su alrededor. Pero lo más probable es que describa una trayectoria como la indicada: una rama de hipérbola. 

La asíntota de la izquierda marca la trayectoria que tendría el asteroide sin la influencia del campo gravitatorio del planeta. La atracción, mayor a menor distancia, obliga al asteroide a cambiar cada vez más rápidamente de dirección. Cuando el asteroide se aleja del planeta decrece paulatinamente la atracción y el movimiento tiende, de nuevo, a ser rectilíneo: aparece la segunda asíntota. 

Las rectas que unen los focos con cualquier punto de una hipérbola forman ángulos iguales con la tangente a la hipérbola en dicho punto. Por tanto, si la superficie de un reflector, es generada por la revolución de una hipérbola alrededor de su eje transverso, todos los rayos de luz provenientes del exterior que converjan sobre un foco, se reflejara pasando por el foco. Esta propiedad se emplea a veces en ciertos telescopios juntos con reflectores parabólicos. 

La diferencia de los tiempos en que un sonido se oye en dos puestos de escucha distintos, es proporcional a las distancias que separan a las fuentes sonoras de los puestos de escucha. Se sabe, por lo tanto, que este punto está sobre una hipérbola. Si se emplea un tercer puesto de escucha para poder determinar otra hipérbola. Si se escucha la fuente sonora esta en la intersección de las dos curvas. Consecuentes el concepto de hipérbola resulta útil en los cálculos de alcances balísticos.

lunes, 9 de septiembre de 2013

Geometría Analítica


Definición de Geometría Analítica:


Rama de las matemáticas en la cual se afirma que a cada lugar geométrico le corresponde una ecuación y viceversa.

Concepto de Pendiente:


pendiente de la ecuación de una recta como caso particular de la tangente a una curva, en cuyo caso representa la derivada de la función en el punto considerado, y es un parámetro relevante.

René Descartes


(La Haye, Francia, 1596 - Estocolmo, Suecia, 1650) Filósofo y matemático francés. René Descartes se educó en el colegio jesuita de La Flèche (1604-1612), donde gozó de un cierto trato de favor en atención a su delicada salud. 

Obtuvo el título de bachiller y de licenciado en derecho por la facultad de Poitiers (1616), y a los veintidós años partió hacia los Países Bajos, donde sirvió como soldado en el ejército de Mauricio de Nassau. En 1619 se enroló en las filas del duque de Baviera; el 10 de noviembre, en el curso de tres sueños sucesivos, René Descartes experimentó la famosa «revelación» que lo condujo a la elaboración de su método.

Tras renunciar a la vida militar, Descartes viajó por Alemania y los Países Bajos y regresó a Francia en 1622, para vender sus posesiones y asegurarse así una vida independiente; pasó una temporada en Italia (1623-1625) y se afincó luego en París, donde se relacionó con la mayoría de científicos de la época. En 1628 decidió instalarse en los Países Bajos lugar que consideró más favorable para cumplir los objetivos filosóficos y científicos que se había fijado, y residió allí hasta 1649. 

Los cinco primeros años los dedicó principalmente a elaborar su propio sistema del mundo y su concepción del hombre y del cuerpo humano, que estaba a punto de completar en 1633 cuando, al tener noticia de la condena de Galileo, renunció a la publicación de su obra, que tendría lugar póstumamente. 

En 1637 apareció su famoso Discurso del método, presentado como prólogo a tres ensayos científicos. Descartes proponía una duda metódica, que sometiese a juicio todos los conocimientos de la época, aunque, a diferencia de los escépticos, la suya era una duda orientada a la búsqueda de principios últimos sobre los cuales cimentar sólidamente el saber.
Este principio lo halló en la existencia de la propia conciencia que duda, en su famosa formulación «pienso, luego existo». Sobre la base de esta primera evidencia, pudo desandar en parte el camino de su escepticismo, hallando en Dios el garante último de la verdad de las evidencias de la razón, que se manifiestan como ideas «claras y distintas». 

El método cartesiano, que Descartes propuso para todas las ciencias y disciplinas, consiste en descomponer los problemas complejos en partes progresivamente más sencillas hasta hallar sus elementos básicos, las ideas simples, que se presentan a la razón de un modo evidente, y proceder a partir de ellas, por síntesis, a reconstruir todo el complejo, exigiendo a cada nueva relación establecida entre ideas simples la misma evidencia de éstas. 

Los ensayos científicos que seguían, ofrecían un compendio de sus teorías físicas, entre las que destaca su formulación de la ley de inercia y una especificación de su método para las matemáticas. Los fundamentos de su física mecanicista, que hacía de la extensión la principal propiedad de los cuerpos materiales, los situó en la metafísica que expuso en 1641, donde enunció así mismo su demostración de la existencia y la perfección de Dios y de la inmortalidad del alma. El mecanicismo radical de las teorías físicas de Descartes, sin embargo, determinó que fuesen superadas más adelante.
Pronto su filosofía empezó a ser conocida y comenzó a hacerse famoso, lo cual le acarreó amenazas de persecución religiosa por parte de algunas autoridades académicas y eclesiásticas, tanto en los Países Bajos como en Francia. En 1649 aceptó la invitación de la reina Cristina de Suecia y se desplazó a Estocolmo, donde murió cinco meses después de su llegada a consecuencia de una neumonía. 

Descartes es considerado como el iniciador de la filosofía racionalista moderna por su planteamiento y resolución del problema de hallar un fundamento del conocimiento que garantice la certeza de éste, y como el filósofo que supone el punto de ruptura definitivo con la escolástica.


François Vieta o Viète


(Fontenay-le-Comte, Francia, 1540 - París, 1603) Matemático francés. Fue miembro del Parlamento de Bretaña (1573-1582) y después consejero privado de las cortes de Enrique III y de Enrique IV. 

Conocedor de la obra del matemático griego Diofanto de Alejandría y de los recientes estudios del italiano Gerolamo Cardano, François Viète estableció las reglas para la extracción de raíces y dio a la trigonometría su forma definitiva en Canon mathematicus (1570). Se dedicó asimismo al estudio de los fundamentos del álgebra, con la publicación, en 1591, de In artem analyticam isagoge, en el cual introdujo un sistema de notación que hacía uso de letras en las fórmulas algebraicas. Se ocupó finalmente de diversas cuestiones geométricas, como la trigonometría plana y esférica.

 

Circunferencia

circunferencia
La circunferencia es una línea curva cerrada cuyos puntos están todos a la misma distancia de un punto fijo llamado centro.

Elementos de la circunferencia

Centro de la circunferencia

El centro es el punto del que equidistan todos los puntos de la circunferencia.

Radio de la circunferencia

El radio es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma.


Cuerda

dibujo
La cuerda es un segmento que une dos puntos de la circunferencia.

Diámetro

dibujo
El diámetro es una cuerda que pasa por el centro de la circunferencia.
El diámetro mide el doble del radio.

Arco

dibujo
Un arco es cada una de las partes en que una cuerda divide a la circunferencia.
Se suele asociar a cada cuerda el menor arco que delimita.

Semicircunferencia

dibujo
Una semicircunferencia es cada uno de los arcos iguales que abarca un diámetro.

Longitud de una circunferencia

radio y diametro de la circunferencia
La longitud de una circunferencia es igual a pi por el diámetro.
longitud de la circunferencia
La longitud de una circunferencia es igual a 2 pi por el radio.
longitud de la circunferencia

Ángulos en la circunferencia

Ángulo central

dibujo
El ángulo central tiene su vértice en el centro de la circunferencia y sus lados son dos radios.
La medida de un arco es la de su ángulo central correspondiente.
expresión

Ángulo inscrito

dibujo
El ángulo inscrito tiene su vértice está en la circunferencia y sus lados son secantes a ella.
Mide la mitad del arco que abarca.
expresión

Ángulo semi-inscrito

dibujo
El vértice de ángulo semiinscrito está en la circunferencia, un lado secante y el otro tangente a ella.
Mide la mitad del arco que abarca.
expresión

Ángulo interior

dibujo
Su vértice es interior a la circunferencia y sus lados secantes a ella.
Mide la mitad de la suma de las medidas de los arcos que abarcan sus lados y las prolongaciones de sus lados.
expresión

Ángulo exterior

Su vértice es un punto exterior a la circunferencia y los lados de sus ángulos son: o secantes a ella, o uno tangente y otro secante, o tangentes a ella:
dibujo
dibujodibujo
Mide la mitad de la diferencia entre las medidas de los arcos que abarcan sus lados sobre la circunferencia.
expresión


Posiciones relativas de un punto respecto a una circunferencia

Interior

dibujo
La distancia del punto al centro es menor que el radio.

Punto sobre la circunferencia.

dibujo
El punto pertenece a la circunferencia.

Punto exterior a la circunferencia

dibujo
La distancia del punto al centro es mayor que el radio.

Posiciones relativas de una recta y una circunferencia

Recta secante

dibujo
La recta corta a la circunferencia en dos puntos.

Recta tangente

dibujo
La recta corta a la circunferencia en un punto.

Recta exterior

dibujo
No tiene ningún punto de corte con la circunferencia.

Posiciones relativas de dos circunferencias


Ningún punto en común

Exteriores

dibujo
La distancia entre los centros es mayor que la suma de las radios.

Interiores

dibujo
La distancia entre los centros es menor que la diferencia de los radios.

Concéntricas

dibujo
Los centros coinciden.

Un punto común

Tangentes exteriores

dibujo
La distancia entre los centros es igual a la suma de los radios.

Tangentes interiores

dibujo
La distancia entre los centros es igual a la diferencia de los radios.

Dos puntos en común

Secantes

dibujo
La distancia entre los centros es mayor que la diferencia de los radios.